技术文章
简述机器视觉专业说明
机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
机器视觉系统的主要功能可以分为定位和识别两大类。识别主要指的是从摄像机获取图像信息并计算三维空间中物体的几何信息,以由此重建和识别物体。
空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数就是摄像机参数。在多数条件下,这些参数必须通过实验与计算才能得到,这个过程被称为机器视觉系统定标(或称为摄像机标定)。
摄像机的标定过程就是确定摄像机的几何和光学参数,以及摄像机相对于世界坐标系的方位。由于标定精度的大小,直接影响着机器视觉的精度。因此,只有做好了摄像机标定工作,后续工作才能正常展开,可以说,提高标定精度也是当前科研工作的重要方面之一。
摄像机标定可以分为传统的摄像机标定方法和摄像机自标定方法两大类。
一、传统的摄像机标定方法按照标定参照物与算法思路可以分成若干类,如基于3D立体靶标的摄像机标定、基于2D平面靶标的摄像机标定、以及基于径向约束的摄像机标定等。传统的摄像机标定需要标定参照物,基本方法是在一定的摄像机模型下,通过对特定标定参照物进行图像处理,为了提高计算精度,还需确定非线性畸变校正参数,并利用一系列数学变换公式计算及优化,来求取摄像机模型内部参数和外部参数。因此该方法在场景未知和摄像机任意运动的一般情况下,其标定很难实现。
二、摄像机自标定方法在20世纪90年代初,由Faugeras,Luong,Maybank等人首次提出。这种自标定法利用摄像机本身参数之间的约束关系来标定,而与场景和摄像机的运动无关,所以更为灵活。
摄像机自标定相对于传统方法有更好的灵活性和实用性,通过多年的不懈努力,理论上的问题已基本解决,目前研究的重点是如何提高标定算法的鲁棒性以及如何很好地用这些理论来解决实际视觉问题。为了提高鲁棒性,在实际应用中建议更多的使用分层逐步自标定方法,并应对自标定的结果进行线性优化。
在行业应用中,机器视觉系统标定会用到标定板,主要的作用是为校正镜头畸变、确定物理尺寸和像素间的换算关系,以及确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系。标定板在图像测量、摄影测量、三维重建等应用中有着重要作用,可以提高测量及检测的精度。