Industry News
Development of binocular stereo vision
Date:2018-04-23
Source:Samsun Technology
双目立体视觉这一有着广阔应用前景的学科,随着光学,电子学以及计算机技术的发展,将不断进步,逐渐实用化,不仅将成为工业检测,生物医学,虚拟现实等领域。目前在国外,双目立体视觉技术已广泛应用于生产,生活中,而我国正处于初始阶段,尚需要广大科技工作者共同努力,为其发展做出贡献。
1、立体视觉的发展方向
就双目立体视觉技术的发展现状而言,要构造出类似于人眼的通用双目立体视觉系统,还有很长的路要走,进一步的研究方向可归纳如下:
(1)如何建立更有效的双目立体视觉模型,能更充分地反映立体视觉不去确定性的本质属性,为匹配提供更多的约束信息,降低立体匹配的难度;
(2)探索新的适用于全面立体视觉的计算理论和匹配择有效的匹配准则和算法结构,以解决存在灰度失真,几何畸变(透视,旋转,缩放等),噪声干扰,特殊结构(平坦区域,重复相似结构等),及遮掩景物的匹配问题;
(3)算法向并行化发展,提高速度,减少运算量,增强系统的实用性;
(4)强调场景与任务的约束,针对不同的应用目的,建立有目的的面向任务的双目立体视觉系统。
在机器视觉赖以普及发展的诸多因素中,有技术层面的,也有商业层面的,但制造业的需求是决定性的。制造业的发展,带来了对机器视觉需求的提升;也决定了机器视觉将由过去单纯的采集、分析、传递数据,判断动作,逐渐朝着开放性的方向发展,这一趋势也预示着机器视觉将与自动化更进一步的融合。需求决定产品,只有满足需求的产品才有生存的空间,这是不变的规律,机器视觉也是如此。
2、国外研究动态
双目体视目前主要应用于四个领域:机器人导航、微操作系统的参数检测、三维测量和虚拟现实。
日本大阪大学自适应机械系统研究院研制了一种自适应双目视觉伺服系统,利用双目体视的原理,如每幅图像中相对静止的三个标志为参考,实时计算目标图像的雅可比短阵,从而预测出目标下一步运动方向,实现了对动方式未知的目标的自适应跟踪。该系统仅要求两幅图像中都有静止的参考标志,无需摄像机参数。而传统的视觉跟踪伺服系统需事先知道摄像机的运动、光学等参数和目标的运动方式。
日本奈良科技大学信息科学学院提出了一种基于双目立体视觉的增强现实系统(AR)注册方法,通过动态修正特征点的位置提高注册精度。该系统将单摄像机注册(MR)与立体视觉注册(SR)相结合,利用MR和三个标志点算出特征点在每个图像上的二维坐标和误差,利用SR和图像对计算出特征点的三维位置总误差,反复修正特征点在图像对上的二维坐标,直至三维总误差小于某个阈值。该方法比仅使用MR或SR方法大大提高了AR系统注册深度和精度。实验结果如图2,白板上三角开的三顶点被作为单摄像机标定的特征点,三个三角形上的模型为虚拟场景,乌龟是真实场景,可见基本上难以区分出虚拟场景(恐龙)和现实场景(乌龟)。
日本东京大学将实时双目立体视觉和机器人整体姿态信息集成,开发了仿真机器人动态行长导航系统。该系统实现分两个步骤:首先,利用平面分割算法分离所拍摄图像对中的地面与障碍物,再结合机器人身体姿态的信息,将图像从摄像机的二维平面坐标系转换到描述躯体姿态的世界坐标系,建立机器人周围区域的地图;基次根据实时建立的地图进行障碍物检测,从而确定机器人的行走方向。
日本冈山大学使用立体显微镜、两个CCD摄像头、微操作器等研制了使用立体显微镜控制微操作器的视觉反馈系统,用于对细胞进行操作,对钟子进行基因注射和微装配等。
麻省理工学院计算机系统提出了一种新的用于智能交通工具的传感器融合方式,由雷达系统提供目标深度的大致范围,利用双目立体视觉提供粗略的目标深度信息,结合改进的图像分割算法,能够在高速环境下对视频图像中的目标位置进行分割,而传统的目标分割算法难以在高速实时环境中得到令人满意的结果。
华盛顿大学与微软公司合作为火星卫星“探测者”号研制了宽基线立体视觉系统,使“探测者”号能够在火星上对其即将跨越的几千米内的地形进行精确的定位玫导航。系统使用同一个摄像机在“探测者”的不同位置上拍摄图像对,拍摄间距越大,基线越宽,能观测到越远的地貌。系统采用非线性优化得到两次拍摄图像时摄像机的相对准确的位置,利用鲁棒性强的最大似然概率法结合高效的立体搜索进行图像匹配,得到亚像素精度的视差,并根据此视差计算图像对中各点的三维坐标。相比传统的体视系统,能够更精确地绘制“探测者”号周围的地貌和以更高的精度观测到更远的地形。
3、国内研究动态
浙江大学机械系统完全利用透视成像原理,采用双目体视方法实现了对多自由度机械装置的动态、精确位姿检测,仅需从两幅对应图像中抽取必要的特征点的三维坐标,信息量少,处理速度快,尤其适于动态情况。与手眼系统相比,被测物的运动对摄像机没有影响,且不需知道被测物的运动先验知识和限制条件,有利于提高检测精度。
东南大学电子工程系基于双目立体视觉,提出了一种灰度相关多峰值视差绝对值极小化立体匹配新方法,可对三维不规则物体(偏转线圈)的三维空间坐标进行非接触精密测量。
哈工大采用异构双目活动视觉系统实现了全自主足球机器人导航。将一个固定摄像机和一个可以水平旋转的摄像机,分别安装在机器人的顶部和中下部,可以同时监视不同方位视点,体现出比人类视觉优越的一面。通过合理的资源分配及协调机制,使机器人在视野范围、测跟精度及处理速度方面达到最佳匹配。双目协调技术可使机器人同时捕捉多个有效目标,观测相遇目标时通过数据融合,也可提高测量精度。在实际比赛中其他传感器失效的情况下,仅仅依靠双目协调仍然可以实现全自主足球机器人导航。
火星863计划课题“人体三维尺寸的非接触测量”,采用“双视点投影光栅三维测量”原理,由双摄像机获取图像对,通过计算机进行图像数据处理,不仅可以获取服装设计所需的特征尺寸,还可根据需要获取人体图像上任意一点的三维坐标。该系统已通过中国人民解放军总后勤部军需部鉴定。可达到的技术指标为:数据采集时间小于5s/人;提供身高、胸围、腰围、臀围等围度的测量精度不低于1.0cm。
1、立体视觉的发展方向
就双目立体视觉技术的发展现状而言,要构造出类似于人眼的通用双目立体视觉系统,还有很长的路要走,进一步的研究方向可归纳如下:
(1)如何建立更有效的双目立体视觉模型,能更充分地反映立体视觉不去确定性的本质属性,为匹配提供更多的约束信息,降低立体匹配的难度;
(2)探索新的适用于全面立体视觉的计算理论和匹配择有效的匹配准则和算法结构,以解决存在灰度失真,几何畸变(透视,旋转,缩放等),噪声干扰,特殊结构(平坦区域,重复相似结构等),及遮掩景物的匹配问题;
(3)算法向并行化发展,提高速度,减少运算量,增强系统的实用性;
(4)强调场景与任务的约束,针对不同的应用目的,建立有目的的面向任务的双目立体视觉系统。
在机器视觉赖以普及发展的诸多因素中,有技术层面的,也有商业层面的,但制造业的需求是决定性的。制造业的发展,带来了对机器视觉需求的提升;也决定了机器视觉将由过去单纯的采集、分析、传递数据,判断动作,逐渐朝着开放性的方向发展,这一趋势也预示着机器视觉将与自动化更进一步的融合。需求决定产品,只有满足需求的产品才有生存的空间,这是不变的规律,机器视觉也是如此。
2、国外研究动态
双目体视目前主要应用于四个领域:机器人导航、微操作系统的参数检测、三维测量和虚拟现实。
日本大阪大学自适应机械系统研究院研制了一种自适应双目视觉伺服系统,利用双目体视的原理,如每幅图像中相对静止的三个标志为参考,实时计算目标图像的雅可比短阵,从而预测出目标下一步运动方向,实现了对动方式未知的目标的自适应跟踪。该系统仅要求两幅图像中都有静止的参考标志,无需摄像机参数。而传统的视觉跟踪伺服系统需事先知道摄像机的运动、光学等参数和目标的运动方式。
日本奈良科技大学信息科学学院提出了一种基于双目立体视觉的增强现实系统(AR)注册方法,通过动态修正特征点的位置提高注册精度。该系统将单摄像机注册(MR)与立体视觉注册(SR)相结合,利用MR和三个标志点算出特征点在每个图像上的二维坐标和误差,利用SR和图像对计算出特征点的三维位置总误差,反复修正特征点在图像对上的二维坐标,直至三维总误差小于某个阈值。该方法比仅使用MR或SR方法大大提高了AR系统注册深度和精度。实验结果如图2,白板上三角开的三顶点被作为单摄像机标定的特征点,三个三角形上的模型为虚拟场景,乌龟是真实场景,可见基本上难以区分出虚拟场景(恐龙)和现实场景(乌龟)。
日本东京大学将实时双目立体视觉和机器人整体姿态信息集成,开发了仿真机器人动态行长导航系统。该系统实现分两个步骤:首先,利用平面分割算法分离所拍摄图像对中的地面与障碍物,再结合机器人身体姿态的信息,将图像从摄像机的二维平面坐标系转换到描述躯体姿态的世界坐标系,建立机器人周围区域的地图;基次根据实时建立的地图进行障碍物检测,从而确定机器人的行走方向。
日本冈山大学使用立体显微镜、两个CCD摄像头、微操作器等研制了使用立体显微镜控制微操作器的视觉反馈系统,用于对细胞进行操作,对钟子进行基因注射和微装配等。
麻省理工学院计算机系统提出了一种新的用于智能交通工具的传感器融合方式,由雷达系统提供目标深度的大致范围,利用双目立体视觉提供粗略的目标深度信息,结合改进的图像分割算法,能够在高速环境下对视频图像中的目标位置进行分割,而传统的目标分割算法难以在高速实时环境中得到令人满意的结果。
华盛顿大学与微软公司合作为火星卫星“探测者”号研制了宽基线立体视觉系统,使“探测者”号能够在火星上对其即将跨越的几千米内的地形进行精确的定位玫导航。系统使用同一个摄像机在“探测者”的不同位置上拍摄图像对,拍摄间距越大,基线越宽,能观测到越远的地貌。系统采用非线性优化得到两次拍摄图像时摄像机的相对准确的位置,利用鲁棒性强的最大似然概率法结合高效的立体搜索进行图像匹配,得到亚像素精度的视差,并根据此视差计算图像对中各点的三维坐标。相比传统的体视系统,能够更精确地绘制“探测者”号周围的地貌和以更高的精度观测到更远的地形。
3、国内研究动态
浙江大学机械系统完全利用透视成像原理,采用双目体视方法实现了对多自由度机械装置的动态、精确位姿检测,仅需从两幅对应图像中抽取必要的特征点的三维坐标,信息量少,处理速度快,尤其适于动态情况。与手眼系统相比,被测物的运动对摄像机没有影响,且不需知道被测物的运动先验知识和限制条件,有利于提高检测精度。
东南大学电子工程系基于双目立体视觉,提出了一种灰度相关多峰值视差绝对值极小化立体匹配新方法,可对三维不规则物体(偏转线圈)的三维空间坐标进行非接触精密测量。
哈工大采用异构双目活动视觉系统实现了全自主足球机器人导航。将一个固定摄像机和一个可以水平旋转的摄像机,分别安装在机器人的顶部和中下部,可以同时监视不同方位视点,体现出比人类视觉优越的一面。通过合理的资源分配及协调机制,使机器人在视野范围、测跟精度及处理速度方面达到最佳匹配。双目协调技术可使机器人同时捕捉多个有效目标,观测相遇目标时通过数据融合,也可提高测量精度。在实际比赛中其他传感器失效的情况下,仅仅依靠双目协调仍然可以实现全自主足球机器人导航。
火星863计划课题“人体三维尺寸的非接触测量”,采用“双视点投影光栅三维测量”原理,由双摄像机获取图像对,通过计算机进行图像数据处理,不仅可以获取服装设计所需的特征尺寸,还可根据需要获取人体图像上任意一点的三维坐标。该系统已通过中国人民解放军总后勤部军需部鉴定。可达到的技术指标为:数据采集时间小于5s/人;提供身高、胸围、腰围、臀围等围度的测量精度不低于1.0cm。